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Abstract. – We show both experimentally and numerically a ghost resonance in the sudden
power dropouts exhibited by a semiconductor laser subject to optical feedback driven by two
simultaneous weak periodic signals. The small signal modulation conspires with the complex
internal dynamics of the system to produce a resonance at a ghost frequency, i.e. a frequency
that is not present in the driving signals. This is an eminently nonlinear effect not reported
before and agrees with the recent theoretical predictions by Chialvo et al. (Phys. Rev. E, 65
(2002) 050902(R)).

The response of dynamical systems to external driving is a far-reaching problem, with
implications ranging from signal detection by sensory systems [1] to information encoding
through diode laser modulation in communication systems [2]. In the former context, for
instance, recent research efforts have been addressed to understand the perception of complex
sounds in auditory systems. To that end, the response of excitable threshold devices to multi-
frequency signals has been theoretically shown to exhibit a resonance at a frequency which is
absent in the input driving [3]. The present letter reports an experimental realization of this
ghost resonance in a different type of complex dynamical system, namely a semiconductor
laser subject to optical feedback. This system has attracted much attention of the researchers
for more than three decades. One of its most interesting characteristic regimes is the low-
frequency fluctuation regime (LFF), in which the output power of the laser suffers sudden
dropouts to almost zero power at irregular time intervals when biased close to threshold [4].
Although the LFF behavior was already observed at the end of the seventies, its dynamics is
not fully understood yet.
Recent experimental [5] and numerical [6,7] reports show the conditions for which a laser

subject to optical feedback and biased close to threshold is able to operate in an excitable
c© EDP Sciences
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Fig. 1 – Diagram of the experimental setup.

regime, before the onset of the LFFs. This means that a laser prepared in such a state is
stable under small periodic perturbation of the bias current and exhibits the three ingredients
of any excitable system, namely: the existence of a threshold for the perturbation amplitude
above which the dropout event can occur; the form and size of the dropout events are invariant
to changes in the magnitude of the perturbation, although multipulse emission has also been
predicted [8]; and a refractory time exists: if a second perturbation is applied at a time shorter
than the refractory time, the system no longer responds.
It has also been shown both experimentally [9, 10] and numerically [11, 12] that a laser

subject to optical feedback can also exhibit stochastic [13] and coherence [14] resonance when
biased close to threshold, extending the richness of the dynamical behaviors of this system.
Stochastic resonance is characterized by an optimum coherence of the system output with a
weak periodic signal for an intermediate value of the noise level. On the other hand, coherence
resonance is characterized by an almost periodic response of the system to an intermediate
level of noise but without any external periodic signal. Both effects have also been observed
in a large variety of systems including periodic and chaotic systems [13,15].
Recently, it has also been shown that the laser responses can be entrained to give a periodic

train of dropouts by superimposing an external forcing to a bias current close to threshold. If
the amplitude of the forcing is larger than a certain value, the dropouts occur at the frequency
of the external forcing when the latter has a frequency larger than the mean frequency of the
dropouts in the absence of the perturbation [16–18].
In all the previous studies, semiconductor lasers were excited at most with a single si-

nusoidal input. In this letter we go further and study experimentally and numerically the
response of a semiconductor laser subject to optical feedback biased close to threshold mod-
ulated by two weak sinusoidal signals.
Analyzing this kind of driving can be considered a first step towards an understanding of

the influence of complex signals on this system. Two-frequency forcing of dynamical systems
has long been studied [19] with an emphasis being usually placed on quasiperiodic dynamics.
In contrast, our results show a resonance at a frequency that is absent in the input signals,
which we thus call ghost resonance. We describe the conditions for and the location of this
ghost resonant frequency, which has recently been predicted, for a simpler system, by means
of theoretical arguments in ref. [3].
The experimental setup, shown in fig. 1, consists of an index-guided AlGaInP semiconduc-

tor laser (Roithner RLT6505G), with a nominal wavelength of 658 nm. The threshold current
is Ith = 18.4mA for a temperature of 19.86 ± 0.01 ◦C. The injection current (IC), without
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Fig. 2 – Left panels: experimental, right panels: numerical results. Time series of the optical power
in response to low (A), medium (B) and high (C) amplitudes of the injected signals. The PDFs of
the dropouts intervals at the three amplitudes are also shown. The PDFs largest peak corresponds
to 1/f0. In all cases the driving signal contains two frequencies (see text).

modulation, is set to 19.7±0.1mA all through the experiment. An antireflection-coated laser-
diode objective (L) is used to collimate the emitted light. An external mirror (M) is placed
83.5 cm away from the front facet of the laser, introducing a delay time of τ ∼ 5.56 ns. The
feedback strength is such that it yields a threshold reduction of 7.0% and it is adjusted by
placing a neutral density filter (NDF) in the external cavity. The output intensity is collected
by a fast photodetector (PD) and analyzed with a 500MHz bandwidth acquisition card.
We are interested in the system response to modulation composed of multiple periodic

signals f1, f2, . . . , fn. Although the present letter focus mostly in the case of two components,
the driving signal has the following general form:

I(t) = Ib

{
1 +m

[
sin(2π(kf0t+∆ft)) + sin(2π((k + 1)f0t+∆ft)) +

+ · · ·+ sin(2π((k + n − 1)f0t+∆ft))
]}

, (1)

with k > 1 and n being the number of terms used. Ib is the bias current and m is the
modulation amplitude. Here we choose to use two terms (n = 2) and f0 = 4.5MHz (although
the same qualitative features would be observed for other choices of f0). For simplicity,
initially we describe results for ∆f = 0, i.e., the singular case of harmonic signals.
The operating parameters of the system are chosen in such a way that in the absence of

modulation the laser emits a continuous-wave (CW) light intensity. Power dropouts start to
appear when a small amount of modulation is added to the laser pump current [20]. Figure 2
shows representative time traces and probability distribution functions (PDF) of dropout
events. The left plot of the figure corresponds to experimental data for low (m = 0.057),
intermediate (m = 0.0815) and high (m = 0.114) amplitude values of the injected signals. It
can be clearly seen that for the intermediate amplitude the dropouts are almost equally spaced
at a time interval that corresponds grossly to 1/f0 (depicted by the double-headed arrow in
the middle panel), a frequency that is not being injected. Thus the laser is detecting the
subharmonic frequency in a nonlinear way. To better visualize this fact, we plot the PDFs for
a large number of dropouts (approximately 1500). For the small amplitude (top-right panel
in each side) one can observe a peak at a time 1/f0 and other peaks at longer times which
indicate that the system responds sometimes to f0 although at some others times dropouts are
skipped. For the optimum value of the amplitude (middle-right panel in each side) the PDF



J. M. Buldú et al.: Ghost resonance in a semiconductor laser 181

3 4 5 6 7
Frequency (MHz)

0

0.2

0.4

0.6

N
or

m
al

iz
ed

 S
D

f 0

Fig. 3 – Experimental results showing that the variability of the dropout intervals reaches a minimum
when its frequency approaches f0.

has a clear peak at 1/f0 which indicates that the system is resonating with this frequency. For
the higher amplitude (bottom-right panel in each side), there are several peaks at different
times corresponding to higher frequencies.
The resonance with the ghost frequency can be visualized by measuring the mean inter-

val between dropout events and its standard deviation (SD) at various values of the signal
amplitude m. Figure 3 shows these results plotted as the normalized SD (i.e. SD/mean) as
a function of the mean frequency of dropout events. It is clearly seen that the minimum
coincides with the f0 (vertical dashed line), i.e., the ghost frequency.
The ghost frequency is not, as one naively would expect, simply the difference between the

two components f1 and f2 (where f1 = 2f0 and f2 = 3f0). This is demonstrated by adding
a small term ∆f �= 0 which shifts both frequencies equally, makes them incommensurate,
and renders the signal inharmonic [3]. In this case we observe that the resonant frequency
shifts as well, despite the fact that the difference remains constant. Results from experimental
runs using f1 = 7 to 10.5MHz and f2 = 11.5 to 15MHz and selecting the optimum amplitude
m = 0.0815 are presented on the left side of fig. 4. The format of the plot is meant to illustrate
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Fig. 4 – Right side: experimental, left side: numerical results. PDFs of the intervals between dropouts
are plotted as their inverse. For each pair of driving f1-f2 frequencies explored the resulting PDF is
plotted at the corresponding f1 frequency. The lines are the expected resonance frequencies from the
theoretical prediction given in the text.
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better the linear change of the resonant frequency fR as a function of the frequency shift. The
PDFs are plotted using the frequency (i.e., inverse of the dropout intervals) axis and they
are lined up with the f1 frequency at which they were obtained. It can be seen that the
density of the most frequent dropouts lies on a straight line. The experimental results show
a remarkable agreement with the prediction given in [3], given by fR = f0 + ∆f/(k + 1/2).
Since the range of f1 we explored is about twice f0, the dotted line labeled “k = 2” predicts
the location of the most important resonance and the one labeled “k = 3” the expected ones
if the range were to be extended further up. Thus, the results presented in this figure agree
extremely well with the ones described previously in a simpler system in [3] and it is the first
experimental demonstration of this type of resonance at the ghost frequency.
We have also checked that our experimental results can be reproduced by the well-known

Lang-Kobayashi (L-K) model [21], which is the simplest model to describe the dynamics of a
semiconductor laser subject to weak/moderate optical feedback. The L-K equations account
for single-mode operation and describe the time evolution of the slowly varying amplitude of
the electric field E(t) and the excess carrier number N(t):

dE
dt

=
1 + iα

2
(G(E,N)− γ)E(t) + κe−iωτE(t − τ) +

√
2βNξ(t), (2)

dN
dt

= Ib

(
1 +m

{
sin(2π(kf0t+∆ft)) + sin(2π((k + 1)f0t+∆ft))

}) − γeN(t)−
−G(E,N)|E(t)|2. (3)

The first term on the right-hand side of eq. (2) accounts for the stimulated emission. α = 3.4 is
the linewidth enhancement factor and γ = 0.24 ps−1 is the cavity decay rate. The second term
is the feedback term which is described by two parameters: the feedback strength κ = 20ns−1

and the external round-trip time τ = 5.57 ns. ω/2π = 4.56 × 1014Hz is the laser free run-
ning frequency. The last term accounts for the spontaneous-emission noise, considered as a
Gaussian white-noise source of zero mean and delta correlation, with a spontaneous-emission
rate β = 5 × 10−10 ps−1. The first term in eq. (3) accounts for the injection current with
the two sinusoidal inputs at frequencies 2f0 and 3f0, being f0 = 4.5MHz and the modulation
amplitude m = 0.0118 with respect to threshold. The second term accounts for the sponta-
neous recombination and the third one for the stimulated recombination. Ib = 1.26×105 ps−1

is the pump parameter, which corresponds to a laser pumped 1.015 times above thresh-
old, with Ith = 19.8mA. The carrier decay rate is γe = 0.62 ns−1. The material gain
G(E,N) depends linearly on N and is slightly nonlinear on |E|2, according to the expression
G(E,N) = g(N(t)−N0)/(1+s|E(t)|2), where N0 = 1.5×108 is the number of carriers at trans-
parency, g is the differential gain coefficient, and s = 1×10−7 is the saturation gain coefficient.
On the right side of fig. 2 we plot the time traces and PDFs obtained from the model in the

same conditions of the experimental ones. A clear correspondence can be observed. Similarly,
the right side of fig. 4 shows the results of the inharmonic case obtained by numerical simu-
lations. It can be clearly seen that the same scaling is obtained as in the experiments, which
indicates that the L-K model is also able to extract the main features of this new resonant
phenomenon. The power spectra of the time series of the optical power (corresponding to the
middle rows in fig. 2) are shown in fig. 5. The power spectrum of the modulated input current
shown in panel a) shows the absence of the frequency f0 which is distinctly present in the
output (plots b) and c)).
The theoretical model also helps us to confirm that the experimentally observed behavior is

not a simple linear subharmonic resonance. To this end, we analyze numerically the response
of the system to a three-frequency inharmonic signal (n = 3 in eq. (1)) with m = 0.008. The
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Fig. 5 – Power spectra of the time series of (a) input pump signal; (b) output optical power ob-
tained from the numerical simulations; and (c) output optical power obtained from the experiment.
f1 = 9MHz and f2 = 13.5MHz. Notice that f0 only appears in the outputs.

Fig. 6 – Numerically determined probability distribution of the intervals between dropouts for three-
frequency forcing plotted using the same format as in fig. 4. Dot-dashed lines represent the theoretical
predictions for k = 1–5.

results are shown in fig. 6, and compared with the theoretical prediction [3], which for n = 3
is fR = f0 +∆f/(k + 3/2). The agreement is also quite satisfactory.
Under the current experimental conditions it is cumbersome to change the noise intensity,

and thus one is unable to fully explore the stochastic aspects of this resonance, as was done
in [3]. We find that the most robust results are obtained when the bias is tuned close to the
threshold for LFF, a region where the effects of even minute fluctuations are expected to be
magnified. The origin of these fluctuations, whether they are induced by the internal nonlinear
dynamics or by stochastic sources, remains unclear. The consequences of these aspects deserve
to be explored in future work. The bases of the ghost resonance were discussed previously in
ref. [3], where it was argued that the simple linear interference of the two (or three, four, . . .)
sinusoidal inputs generate peaks with larger amplitude at time intervals close to 1/f0 (for the
case of harmonics signals), which are detected nonlinearly by means of a threshold. In the
present case, the laser’s intrinsic nonlinearities are playing the role of the threshold of the
simple model analyzed in [3]. In this sense, this phenomenon is shown to be rather ubiquitous
and it can thus be expected to arise in other nonlinear systems with excitable properties.
In conclusion, we have described, experimentally and numerically, a new type of resonance

observed when a semiconductor laser subject to optical feedback is biased close to its excitable
dynamics, near the onset of the low-frequency fluctuation regime. It is shown that, when this
system is modulated with two weak periodic signals of different frequencies, it exhibits a
resonance at a ghost frequency, i.e., a frequency that it is not present in the modulating
input. We find that for injection frequencies kf0 and (k + 1)f0, f0 being any slow frequency,
we observe the resonance at exactly f0, a frequency that is not present in the injection current.
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It is also observed that, when a constant shift is added to both frequencies of the injected
signal, the resonance does not appear at the difference between the two frequencies but at a
frequency that follows a simple linear relationship. Similar results are obtained numerically
for three-frequency forcing. Our results confirm the recent theoretical predictions by Chialvo
and coworkers, based on a simpler system [3].
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