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Synchronization in Semiconductor Laser Rings
Javier Martín Buldú, M. C. Torrent, and Jordi García-Ojalvo

Abstract—We examine the dynamics of semiconductor lasers
coupled in a ring configuration. The lasers, which have stable
output intensity when isolated, behave chaotically when coupled
unidirectionally in a closed chain. In this way, we show that
neither feedback nor bidirectional coupling is necessary to induce
chaotic dynamics at the laser output. We study the synchronization
phenomena arising in this particular coupling architecture and
discuss its possible application to chaos-based communications.
Next, we extend the study to bidirectional coupling and propose
an appropriate technique to optical chaos encryption/decryption
in closed chains of mutually coupled semiconductor lasers.

Index Terms—Chaos, closed loop, secure communications,
semiconductor lasers.

I. INTRODUCTION

S INCE the seminal work of Cuomo and Oppenheim [1]
demonstrating the potential of chaotic systems for informa-

tion encoding, communications through chaotic carriers have
been increasingly studied [2]–[5]. Despite being first imple-
mented in electronic circuits, the technological importance of
optical communications have recommended the use of chaotic
lasers as emitters and receivers in chaos-based communication
systems [6]–[8]. Particularly, semiconductor lasers, which are
ubiquitously used in optical communications, have been widely
studied [9]. Due to their fast dynamics, they have been used
to transmit information with bit rates on the order of gigahertz
[10], [11]. More recently, a field experiment using commercial
optical networks has demonstrated the ability and robustness of
chaotic semiconductor lasers to transmit high-bit-rate messages
in real-world conditions [12]. Both single-mode [9] and multi-
mode [13], [14] lasers have proved adequate for optical chaotic
communications (in the latter, with the possibility of multi-
plexing different messages through the longitudinal modes of
the laser).

A solitary semiconductor laser is not able to have chaotic dy-
namics since it is a class B laser [15], [16] (i.e., a 2-D dynamical
system). To that end, some kind of external perturbation must be
considered. In the case of all-optical systems, external optical
feedback has been the paradigmatic way to induce chaos in
semiconductor lasers [17]. Alternative ways of inducing chaotic
dynamics in semiconductor lasers have been via injection from
another chaotic laser [18] or by mutual injection between
otherwise stable lasers [19], [20]. In this paper, we propose
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Fig. 1. Schematic setup of the closed-loop configuration. Three semiconduc-
tor lasers (SL1, SL2 and SL3) are unidirectionally coupled due to OIs placed in
the SMF. A lens (L) collimates the laser beam, and a BS splits its path.

a different technique to induce chaotic oscillations on cou-
pled semiconductor lasers. By coupling isolated semiconductor
lasers in closed-loop chains, we obtain chaotic behavior even in
the absence of optical feedback or bidirectional coupling. We
investigate the synchronization of the destabilized lasers and
observe that, despite the high correlation between their outputs,
the lasers have transient states of desynchronization that prevent
this configuration from constituting a robust technique for
chaotic encryption. Next, we extend the study to bidirectional
coupling in the same kind of coupled chains. In this case,
we observe identical synchronization between lasers, which
synchronize with zero lag despite the delay in the transmission
channel. When a message is introduced by modulating the
pumping current of any of the lasers, it is possible to recover
the message at any of its neighbors. In this way, we propose
this straightforward configuration as a method of message
encryption within a restricted community of users.

II. RING CONFIGURATION

Fig. 1 shows a schematic representation of the system pro-
posed here. The output beam of each laser is split in two paths
with a 50% beam splitter (BS). In this way, each laser is able to
receive light from a neighbor and, at the same time, send part of
the output to the other neighbor. Once divided, the laser beam is
collimated into a single-mode optical fiber (SMF), which acts
as the transmission channel. Optical isolators (OIs) guarantee
unidirectional coupling between the lasers.1

Equations describing the dynamics of the configuration
explained above can be easily obtained from those of a

1Note that the setup could be further simplified if lasers with two open facets
were considered.
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TABLE I
PARAMETER VALUES (THE SAME FOR ALL LASERS) USED

IN THE SIMULATIONS

unidirectionally injected semiconductor laser [21]. Two vari-
ables describe the dynamics of each laser, namely 1) the carrier
number N(t) and 2) the slowly varying envelope of the com-
plex field E(t), which are given by

Ėm(t) =
1
2
(1 + iα)[Gm − γ]Em(t)

+ κine−iω0τcEin(t − τc) +
√

2βNξ(t) (1)

Ṅm(t) =
Im

e
− γeNm − Gm|Em|2 (2)

where the subindex m indicates the laser number (m = 1, 2, 3),
and the subindex in corresponds to the laser whose light is
injected into laser m. Parameters of (1) and (2) are the linewidth
enhancement factor α, the photon decay rate γ, the strength κin

of injection (unidirectional coupling), the coupling time τc, the
free-running frequency of the laser ω0, the pumping current I ,
the elementary charge e, and the carrier decay rate γe. The last
term in (1) accounts for spontaneous emission, where ξ(t) is a
Gaussian white noise term of zero mean and correlation of 1,
and β is a measure of the noise strength. The material gain Gm

is given by

Gm =
g(Nm − N0)
1 + ε|Em|2 (3)

where g is the differential gain, N0 is the transparency inver-
sion, and ε is the saturation coefficient. The term ω0τc [see
second term in (1)], known as the injection phase, is set to zero
for simplicity; numerical simulations have shown that setting
ω0τ "= 0 does not change the results that follow. The injection
phase can be controlled experimentally by fine tuning of either
the lasing frequency or the cavity length. Table I summarizes
the values of the parameters described above, which are as-
sumed equal for all lasers. Numerical simulations with slight
(< 3%) parameter mismatch show results similar to those
obtained with equal parameters.

III. CHAOTIC DYNAMICS AND SYNCHRONIZATION

As mentioned in Section I, feedback has been the most usual
way to induce chaotic dynamics in a semiconductor laser. More
recently, mutual coupling has been shown to be an alternative
technique to induce aperiodic dynamics. For the case of a
solitary laser unidirectionally injected into a second one, and

Fig. 2. From stable to chaotic dynamics. Output intensity (vertically shifted)
of three semiconductor lasers (SL1, SL2 and SL3) unidirectionally coupled in a
ring configuration. Injection is initially blocked until lasers achieve continuous
wave operation. At ton = 80 ns, unidirectional injection is allowed, and pertur-
bations are transmitted through the chain. The inset shows how the perturbation
is followed by the relaxation oscillations at the output intensity. After a certain
transient, the dynamics of all lasers become aperiodic.

in the absence of optical detuning, chaotic dynamics does
not arise, at least for low to moderate injection strengths κc.
Furthermore, the coupling time τc does not have any relevance
on the local dynamics of the lasers. Under these conditions,
the receiver laser is injection locked and adjusts its phase to
that of the transmitter, with both lasers having constant power.
When more lasers are introduced in the unidirectional chain,
phase locking and constant power hold throughout the chain.
Nevertheless, there is a straightforward way of destabilizing the
whole array of lasers, i.e., closing the chain.

If a perturbation is applied to the first laser of an open chain,
it is transmitted to the following laser, which in turn sends the
perturbation to the following node of the chain, and so on.
When the perturbation goes through each of the lasers in the
chain, the laser returns to its stable output via characteristic
relaxation oscillations [15]. On the other hand, if the chain is
closed, any perturbation introduced into the system will remain
on it. Feedback of a traveling perturbation onto itself, upon
interaction with the relaxation oscillations excited by it during
the previous round trip, fully destabilizes the laser intensities
after a certain number of laps within the closed chain, leading
to chaos in all the lasers in the ring. Fig. 2 shows an example of
the transition to chaos for the configuration depicted in Fig. 1.
In this particular case, we have neglected spontaneous emission
in order to observe the propagation of the perturbations. The
coupling time is set to τc = 2 ns for all pairs of lasers. Under
these conditions, we block the coupling, turn on the lasers, and
wait for a short transient until they achieve their constant output.
When all lasers have constant power, we unblock the coupling
(ton = 80 ns), and a sudden jump, due to the injection, is ob-
served in the outputs of all lasers. The perturbation disappears
after some oscillations of the laser output, as can be observed in
the inset of Fig. 2. However, the intensity perturbation is sent to
the following laser and returns after a complete loop, interacting
with the perturbation remaining from the previous round trip.
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Fig. 3. (a) Laser intensities of (solid line) SL1, (dashed line) SL2, and (dotted
line) SL3, which have been vertically shifted in order to ease comparison. All
intensities have been filtered by a second-order Butterworth filter in order to
simulate the unavoidable filtering of the photodetectors in a real experiment.
(b) Closer look shows that, despite all laser intensities fall in chain, the role of
the first laser is exchanged.

For each round trip, the perturbation is further stretched in
time, and after a certain number of round trips (see temporal
evolution in Fig. 2), it leads to chaotic dynamics in all three
lasers.

Once the lasers have reached the unstable behavior, we can
analyze the relationship between their outputs. Fig. 3 shows
the temporal evolution of the laser outputs, once filtered by
a low-pass filter. In this way, we simulate the filtering effects
of a photodetector in a real experiment [22], thereby unveiling
the low-frequency fluctuation dynamics [23] of the system,
consisting of intensity drops at frequencies much lower than
those of the fast intensity pulses.

Fig. 3(a) shows that, despite synchronization is not perfect,
all laser intensities fall together. A closer look at the time series
[Fig. 3(b)] gives away some additional information. First, inten-
sity dropouts occur sequentially, with a time delay between the
lasers equal to the coupling time τc. Second, the laser that falls
first, inducing enchained dropouts, is not always the same. This
behavior is typically associated with two bidirectionally cou-
pled semiconductor lasers, which synchronize with a time delay
of τc, the role of leader switching randomly from one laser to
the other, provided the two lasers have equal frequencies [19].

Let us evaluate quantitatively the quality of synchronization.
With this aim, we compute the following cross-correlation
function C(∆t) between pairs of unfiltered intensity time
series:

Cij(∆t) =
〈(Ii(t) − 〈Ii〉) (Ij(t + ∆t) − 〈Ij〉)〉
√

〈(Ii(t) − 〈Ii〉)2〉〈(Ij(t) − 〈Ij〉)2〉

where Ii and Ij represent the output intensity of lasers i and
j, respectively (i, j = 1, 2, 3), and the brackets indicate time
averaging. In this way, we compute the correlation between
time series for different shifts in the time axis, obtaining
the quality of the synchronization (−1 < C(∆t) < 1) and the
delay between series.

Fig. 4. (a) Output intensities of SL1, SL2, and SL3 (solid and dashed lines)
in pairs, and (b) the corresponding cross-correlation function. In (a), one of the
time series is shifted τc = 2 ns in order to show time-lagged synchronization
between lasers. In (b), maxima are placed at ∆tmax = 2 ns and have a value of
(from top to bottom): CL1−L2(∆tmax) = 0.92, CL2−L3(∆tmax) = 0.91,
and CL3−L1(∆tmax) = 0.91.

In Fig. 4, we plot the three unfiltered laser outputs, together
with the cross-correlation function C(∆t). Time series are
plotted in pairs, with one of the laser outputs shifted a time τc,
in order to reveal synchronization. We can observe that regions
of synchronized dynamics coexist with others where synchro-
nization is lost. This point is not reflected when computing the
cross-correlation function between lasers, which has maxima,
in all cases, with values higher than 0.9. This fact reveals that
synchronization between lasers is good and that the unsyn-
chronized episodes are much shorter than the synchronization
regions. Furthermore, we can observe how the cross correlation
is maximal at ∆t = 2 ns, indicating a time delay between lasers
that is equal to the coupling time τc = 2 ns. The location and
relative heights of the other peaks in the correlation function
reflect the fact that the three lasers dropout sequentially and
contrast with the case of two bidirectionally coupled lasers,
where two peaks of equal height appear at ±τc. In any case,
good synchronization between the lasers (i.e., max(C) > 0.8)
holds for pumping currents close to the threshold but decreases
as the pumping is increased, similarly to what happens in two
bidirectionally coupled lasers [20].

Summarizing the main observations concerning the synchro-
nization between the three unidirectionally coupled chaotic
lasers, we can say that: 1) they show good synchronization;
2) they exchange the leader–laggard role randomly in time;
and 3) they exhibit short episodes of unsynchronized behav-
ior. The last two points are crucial to evaluate the ability of
this configuration to encrypt/decrypt a message. Encryption
with chaotic carriers relies in the synchronization between two
chaotic systems; if synchronization is not maintained, it is not
possible to recover the encrypted message. In this sense, the
cross-correlation function, which is often used as a way of
measuring the quality of synchronization, does not work in
evaluating the ability of the system to recover an encrypted
message. Since the cross correlation is only a mean value of
two time series, we do not know if deviations from C(∆t) = 1
(perfect synchronization) are due to an offset error, which
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Fig. 5. (a) Output intensities of SL1. (Upper trace) filtered and (lower trace)
unfiltered. The former has been vertically shifted in order to ease comparison.
(b) Sliding cross correlation between the output intensities of SL1 and SL2.

could be filtered, or to short transients where synchronization
is completely lost. In order to distinguish between both cases,
we compute the sliding cross correlation, which consists of
the maximum of the cross-correlation function evaluated in
short temporal windows for a given shift of the time series (in
this case ∆t = 2 ns). In this way, we obtain the instantaneous
correlation (within a short window) between laser outputs.

Fig. 5 shows the temporal evolution of SL1 intensity I1(t)
and the corresponding sliding cross correlation with SL2 in-
tensity I2(t), respectively. We have plotted both the unfiltered
and filtered intensity of SL1 for better reference. We can see
how, despite values of the cross correlation are close to 1,
there are strong decays that correspond with transients where
synchronization is lost. This fact indicates that closed rings
of unidirectionally coupled semiconductor lasers are not ade-
quate to recover an encrypted message, since this requires not
only high cross correlation between output intensities but also
continuous synchronization. It is worth noting that episodes of
unsynchronized behavior are related with the intensity dropouts
of the lasers, as can be observed by comparing the filtered
output intensity [Fig. 5(a)] with the sliding cross correlation
[Fig. 5(b)]. As shown in [24], it is during the intensity turnoff
that the lasers are prone to lose synchronization, since their
optical frequency shifts drastically.

IV. BIDIRECTIONAL COMMUNICATION

The previous results seem to indicate that a ring configura-
tion would not be a suitable way of transmitting information
within a community of users: Despite unidirectional injection
leads to chaotic synchronized behavior, it does not guarantee
permanent synchronization. In fact, similar behavior is reported
in the case of two bidirectionally coupled semiconductor laser,
where again synchronization does not help in recovering the
encoded information [20]. Nevertheless, we can combine both
ingredients, i.e., closed-loop chain and bidirectional coupling,
and observe what kind of synchronization is obtained. As
shown in [25], it is possible to synchronize a linear chain

Fig. 6. (a) Output intensities of SL1, SL2, and SL3 and (b) the corresponding
cross-correlation function. In (b), maxima are placed at ∆t = 0 ns, which
indicates that synchronization occurs at zero lag. Value of the maxima are (from
top to bottom): CL1−L2(∆tmax) = 0.994, CL2−L3(∆tmax) = 0.995, and
CL3−L1(∆tmax) = 0.994.

of three mutually coupled semiconductor lasers, so let us go
one step further by coupling the lasers in a bidirectional ring.
Furthermore, it is a simpler configuration, since the setup would
be the one in Fig. 1, where the OIs have been removed. Fig. 6
shows the output intensities of the three lasers with their corre-
sponding cross-correlation function. The time series gives some
insights about what we are going to find in the cross-correlation
plot, i.e., the three laser intensities are surprisingly similar.
Lasers are synchronized both at low and high time scales,
and synchronization holds continuously. This point is reflected
at the cross correlation, which for all pairs of lasers has a
maximum higher than 0.99, corresponding to a very good level
of synchronization. In fact, simulations done in the absence
of stochastic terms, which account for spontaneous emission
[i.e., neglecting the last term in (1)], show a maximum equal to
unity in the cross-correlation function. It is worth noting that the
best correlation is obtained at ∆t = 0, indicating that the three
lasers synchronize isochronally, irrespective of the coupling
time between them. This phenomenon, known as the zero-lag
synchronization, has been recently observed between the outer
lasers of a linear chain [25]. In fact, zero-lag synchronization is
also a solution of the unidirectional case; nevertheless, it is not
a stable solution, and the inclusion of noise in the system leads
to lag synchronization between lasers. Finally, when computing
the sliding cross correlation between pairs of lasers (not shown
here), we obtain values close to unity, which hold through time,
a fact that suggests that we have found a suitable configuration
for message encryption/decryption.

The next step is to introduce and encode a message at one
of the lasers and try to recover it at another one. We are going
to use a standard encryption method known as the Chaos Shift
Keying [5]. This technique is based in the chaos-pass filtering
properties of the chaotic systems. When two chaotic systems
synchronize, they filter out small perturbations from the cou-
pling signal, synchronizing only with its chaotic part. The two
chaotic systems need to be similar, and mismatches in any of
their internal parameters can induce a loss of synchronization.
In our particular case, the message is introduced at one of the
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Fig. 7. Example of message encryption/decryption. (a) Message sent from
SL1, (b) output intensity of SL1, showing the message encryption, and
(c) intensity difference between SL1 and SL2 and (dashed line) recovered
message after filtering and reshaping.

lasers by varying slightly the pumping current of SL1. In this
way, the receiver laser will only synchronize when the pump
currents of both transmitter and receiver are equal. Thus, we can
recover the message at SL2 or SL3 by computing the difference
between the injection coming from SL1 and the output of the
receiver laser. When the pump currents are different, the lasers
will lose synchronization. This procedure is shown in Fig. 7. In
Fig. 7(a), we show the message that will be introduced into the
laser by pumping modulation. The amplitude of the message is
0.2% of the pumping current. In fact, the relative amplitude of
the message must be low enough to guarantee that it is hidden
within the chaotic carrier and high enough to be distinguished
from the intrinsic noise of the system. In the current system
(i.e., three bidirectionally coupled lasers), amplitudes between
0.1% and 2% fulfill both requirements.

Fig. 7(b) shows the output intensity of SL1, which com-
pletely hides the input message. The corresponding spectrum
of the signal (not shown here) is also covered by the spectrum
of the chaotic carrier. Fig. 7(c) shows the difference between the
input signal coming from SL1 and the output of SL2. We can
see episodes of unsynchronized dynamics that correspond to
the modulation of the pump current of SL1 (i.e., the message).
Finally, by filtering and reshaping the subtracted signal, we are
able to recover the encoded message.

The security of unidirectional communications with chaotic
carriers relies on the fact that not only the transmitted signal
but also the chaotic receiver is needed in order to recover
the message. In bidirectional communications, which is the
case of this paper, an eavesdropper could be able to obtain
the transmitter and receiver signal (both at the transmission
channel) and recover the message by subtraction of both sig-
nals. Nevertheless, if the transmitter and receiver send the
same message at the same time, the eavesdropper will not
be able to detect it, since the subtraction is equal to zero.
In this way, bidirectional communication systems could be
used to negotiate a key, which could consist of the first chain

Fig. 8. Average of the maximum of the cross-correlation function between
pairs of lasers as a function of the relative parameter mismatch ν for (dashed
line) unidirectional and (solid line) bidirectional coupling. Parameters are given
as follows: pumping current I , coupling strength κ, cavity decay rate γ, carrier
decay rate γe, transparency inversion N0, and differential gain g.

of bits that coincide with each other and therefore could not
be seen by a hypothetical eavesdropper. This novel technique
of encryption has been proposed recently by Vicente et al.
in two bidirectionally coupled semiconductor lasers [26] and
can be applied to setups where bidirectional communication is
considered.

V. SYNCHRONIZATION AND PARAMETER MISMATCH

It is worth noting that synchronization holds for a wide re-
gion of parameter mismatches. With the aim of checking the in-
fluence of these mismatches on the quality of synchronization,
we calculated the mean cross-correlation index of the system,
which is obtained by averaging the maximum of the cross-
correlation function between all pairs of lasers. Fig. 8 shows
the results for different parameters, where ν is the relative
mismatch between lasers. Both the unidirectional (dashed line)
and bidirectional (solid line) rings are considered.

We can see how, in all cases, the bidirectional coupling con-
figuration shows better synchronization. The pumping current
is the most influential parameter, with correlations above 0.8
being only obtained for mismatches below 3% and 4% in the
unidirectional and bidirectional setups, respectively. The rest of
the parameters plotted in Fig. 8 show a slow decay with the
mismatch, indicating the robustness of the synchronization in
this kind of setups.

VI. CONCLUSION

We have studied the phenomena of chaos synchronization
and communication in rings of coupled semiconductor lasers.
Unidirectional coupling is shown to induce chaotic dynamics
in the otherwise stable lasers. However, even though a good
degree of synchronization exists between the lasers in this case,
the existence of periods of synchronization loss, and the appear-
ance of a leader–laggard dynamics, does not render this con-
figuration suitable for chaos-based communications. The case
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of bidirectionally coupled lasers, on the other hand, leads to
zero-lag synchronization between all three lasers at all times,
without periods of synchronization loss, and thus, this configu-
ration is more adequate for chaotic communications. We believe
that this technique could be applied to secure communications
within a restricted community of users. Furthermore, the exper-
imental implementation is simpler than previous setups where
optical feedback at the transmitter lasers is required.
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