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ABSTRACT

We show both numerically and experimentally that a semiconductor laser prepared in an excitable state and
driven by two weak periodic signals with different frequencies is able to resonate at a ghost frequency, i.e., a
frequency that it is not present in the forcing signal. The small signal modulation together with the complex
internal dynamics of the system produces this resonance. This is an eminently nonlinear effect that agrees with
the recent theoretical predictions by Chialvo et al. [Phys. Rev. E 65, 050902(R), 2002].

1. INTRODUCTION

Semiconductor lasers subject to optical feedback have attracted the attention of the researchers for more than
three decades. One of the most interesting regimes is the excitable regime. When the laser is biased close enough
to threshold the system remains stable without any external perturbation. However, if a small modulation
current is superimposed onto the bias current the system exhibits the three ingredients that are required in
any excitable system: first, the existence of a threshold above which an excitation can occur; second, the form
and size of the response is invariant to any change in the magnitude of the perturbation; third, a refractory
time exists: if a second perturbation is applied at a time shorter than the refractory time, the system no longer
responds.1, 2

For bias currents slightly higher these systems operates is the well known Low-Frequency Fluctuation regime
(LFF) in which the output power of the laser suffers sudden dropouts to almost zero power at irregular time
intervals when is biased close to threshold.3 Although the LFF behavior has been observed already at the end
of the seventies, its dynamics is not fully understood yet.

As already mentioned, recent experimental1 and numerical2, 4 reports show the conditions for which a laser
subject to optical feedback and biased close to threshold is able to operate in an excitable regime, before the onset
of the LFFs. It has been also shown both experimentally5, 6 and numerically7, 8 that a laser subject to optical
feedback can also exhibit stochastic9 and coherence10 resonance when biased close to threshold, extending the
richness of the dynamical behaviors of this system. While stochastic resonance is characterized by an optimum
response of the system subject to a weak periodic signal for an intermediate value of the noise level, coherence
resonance is characterized by an almost periodic response of the system to an intermediate level of noise but
without any external periodic signal. Both effects have been also observed in a large variety of systems including
periodic and chaotic systems.9, 11

Also recently it has been shown that the laser responses can be entrained to give a periodic train of dropouts
by superimposing an external forcing to a bias current close to threshold. If the amplitude of the forcing is larger
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than a certain value, the dropouts occur at the frequency of the external forcing when the latter has a frequency
larger than the mean frequency of the dropouts in the absence of the perturbation.12–14 More recently, it has
been also shown that two laser coupled bidirectionally can exhibit a kind of power dropouts similar to the ones
observed when the laser is subject to optical feedback.15 Moreover, if one of these lasers is slightly modulated
the power dropouts entrain to the modulation frequency much more efficiently than when one of the lasers is
subject to optical feedback16

In all the previous studies, semiconductor lasers were excited at most with a single sinusoidal input. In this
paper we go further and study numerically and experimentally the response of a semiconductor laser subject to
optical feedback biased close to threshold and modulated by two weak sinusoidal signals. The main point of our
results is that the system response shows a resonance at a frequency that is absent in the input signals. For this
reason we call it ghost resonance. We describe the condition for and the location of this ghost resonant frequency
which has been recently predicted, for a simpler system, by theoretical arguments.17

2. MODELLING AND SIMULATIONS

We are interested in the system response to modulation composed of multiple periodic signals f1, f2, ...fn. Al-
though the present work focus in the case of two components, the driving signal has the following general form:

I(t) = Ib {1 + m [sin(2π(kf0t+∆f t)) + sin(2π((k+1)f0t+∆f t)) + ...... + sin(2π((k+n−1)f0t+∆f t))]} , (1)

with k > 1 and n being the number of terms used. Ib is the bias current and m is the modulation amplitude.
Here we choose to use the first two terms (n = 2) and f0=4.5 MHz (although the same qualitative features would
be observed for other choices of f0). For simplicity, initially we describe results for n = 2 and ∆f = 0, i.e., the
singular case of harmonic signals.

The laser is modelled by the Lang-Kobayashi (L-K) model18 that describes the dynamics of a semiconductor
laser subject to weak/moderate optical feedback and accounts for single mode operation. It describes the time
evolution of the slowly varying amplitude of the electric field E(t) and the excess carrier number N(t):

dE

dt
=

1 + iα

2
(G(E,N)− γ) E(t) + κe−iωτE(t− τ) +

√
2βNξ(t) (2)

dN

dt
= Ib(1 + m{sin(2π(kf0t + ∆ft)) + sin(2π((k + 1)f0t + ∆ft))})− γe N(t)−G(E,N) |E(t)|2 (3)

G(E,N) =
g(N(t)−N0)
1 + s|E(t)|2 . (4)

The first term on the right hand side of Eq.(2) accounts for the stimulated emission. α = 3.4 is the linewidth
enhancement factor and γ = 0.24 ps−1 is the cavity decay rate. The second term is the feedback term which is
described by two parameters: the feedback strength κ = 20 ns−1 and the external round–trip time τ = 5.57 ns.
ω/2π = 4.56× 1014 Hz is the laser free running frequency. The last term accounts for the spontaneous emission
noise, considered as a Gaussian white noise source of zero mean and delta correlation, with a spontaneous
emission rate β = 5 × 10−10 ps−1. The first term in Eq.(3) accounts for the injection current with the two
sinusoidal inputs at frequencies 2f0 and 3f0, being f0 = 4.5 MHz and modulation amplitude m with respect to
threshold. The second term accounts for the spontaneous recombination and the third one for the stimulated
recombination. Ib = 1.07 Ith is the bias current, Ith = 19.8 mA is the threshold current and γe = 0.62 ns−1 is
the carrier decay rate. Eq.(4) accounts for the material gain which depends on N and |E|2. N0 = 1.5 × 108 is
the number of carriers at transparency and s = 1× 10−7 is the saturation gain coefficient.



3. NUMERICAL RESULTS

In Fig. 1 we show examples of three representative time traces for low (m = 0.005), intermediate (m = 0.012)
and high (m = 0.028) amplitude values of the injected signals obtained from the numerical integration of eqs.
(2)-(4). It can be clearly seen that for the intermediate amplitude the dropouts are almost equally spaced at a
time interval that corresponds grossly to 1/f0, a frequency that is not being injected. Thus the laser is detecting
in a nonlinear way the subharmonic frequency. When computing the probability distribution function for a large
number of dropouts we observe, for the optimum value of the amplitude, a clear peak at 1/f0 which indicates
that the system is resonating with this frequency.
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Figure 1: Numerical time series for low (a), intermediate (b) and high (c) amplitudes of the injected signals.

The resonance with the ghost frequency can be visualized by measuring the mean interval between dropout
events and its standard deviation (SD) at various values of the signal amplitude m. Fig. 2 shows these results
plotted as the normalized SD (i.e., SD/mean) as a function of the mean frequency of dropout events. It is clearly
seen that the minimum is very close to f0 (vertical dashed line), i.e., the ghost frequency.
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Figure 2: Numerical results showing that the variability of the dropout intervals reaches a minimum for a
frequency close to f0.



The ghost frequency is not, as one naively would expect, simply the difference between the two components
f1 and f2, (where f1 = 2f0 and f2 = 3f0). This is demonstrated by adding a small term (i.e., ∆f 6= 0) which
shifts equally both frequencies. In this case we observe that the resonant frequency shifts as well, despite the
fact that the difference remains constant. Numerical results using f1 = 7 to 10.5 MHz and f2 = 11.5 to 15 MHz
and selecting the optimum amplitude m = 0.012 are presented in Fig. 3. The format of the plot is meant to
illustrate better the linear change of the resonant frequency fR as a function of the frequency shift. The PDFs
are plotted using frequency (i.e., inverse of the dropout intervals) axis and they are lined up with the f1 frequency
at which were obtained. It can be seen that the density of the most frequent dropouts lies on a straight line.
The experimental results show a remarkable agreement with the theoretical prediction17 defined by:

fR = f0 +
∆f

k + 0.5
. (5)
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Figure 3: PDFs of the intervals between dropouts plotted as their inverse. For each pair of frequencies f1-f2

explored the PDF is plotted at the corresponding f1 frequency. The lines are expected resonance frequencies
from Eq.(5).

Since the range of f1 we explored is about twice f0, the dotted line labeled ‘k=2’ predicts the location of the
most important resonance and the one ‘k=3’ the expected ones if the range where to be extended further up.
Thus, the results presented in this figure agree very well with the ones described recently17 for a simpler system.



4. EXPERIMENTAL RESULTS

Figure 4: Experimental set-up.

In order to verify our numerical results we built up an experiment using a semiconductor laser subject to
weak/moderate optical feedback and driven by two weak periodic signals. The experimental setup, shown in Fig.
4, consists of an index-guided AlGaInP semiconductor laser (Roithner RLT6505G), with a nominal wavelength of
658 nm. The threshold current is Ith = 18.4 mA for a temperature of 19.86±0.01 oC. The injection current (IC),
without modulation, is set to 19.7 ± 0.1 mA all through the experiment. An antireflection-coated laser-diode
objective (L) is used to collimate the emitted light. An external mirror (M) is placed 83.5 cm away from the front
facet of the laser, introducing a delay time of τ ∼ 5.56 ns. The feedback strength is such that it yields a threshold
reduction of 7.0% and it is adjusted by placing a neutral density filter (NDF) in the external cavity. The output
intensity is collected by a fast photodetector (PD) and analyzed with a 500 MHz bandwidth acquisition card.

0,2

0,4

0,6

0,8

1

0,2

0,4

0,6

0,8

1

In
te

ns
ity

 (a
rb

. u
ni

ts
)

0 1 2
Time  (   s)

0

0,2

0,4

0,6

0,8

1

µ

a)

b)

c)

Figure 5: Experimental time series for low (a), medium (b) and high (c) injected signals.

In Fig. 5 we show examples of three representative time traces for low (m = 0.057), intermediate (m = 0.0815)
and high (m = 0.114) amplitude values of the injected signals. It can be clearly seen that for the intermediate
amplitude the dropouts are almost equally spaced at a time interval that corresponds grossly to 1/f0, a frequency
that is not being injected. As explained before, the laser is detecting in a nonlinear way the subharmonic
frequency.
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Figure 6: Experimental PDFs of the dropouts intervals at the three amplitudes, low (a), intermediate (b) and
high (c) injected signals. The PDFs largest peak corresponds to 1/f0.

To better visualize this fact we plot on figure 6 the probability distribution functions (PDF) for a large
number of dropouts (approx. 1500). For the small amplitude (panel a) it can be observed a peak at a time 1/f0

other peaks at longer times which indicate that the system responds sometimes to f0 although at some others
times dropouts are skipped. For the optimum value of the amplitude (panel b) the PDF has a clear peak at 1/f0

which indicates that the system is resonating with this frequency. For the higher amplitude (panel c) there are
several peaks at different times corresponding to higher frequencies.
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Figure 7: Experimental results showing that the variability of the dropout intervals reaches a minimum when
its frequency approaches f0.

Fig. 7 shows the results of the normalized SD (i.e., SD/mean) as a function of the mean frequency of dropout
events. It is clearly seen that the minimum is very close to f0 (vertical dashed line), i.e., the ghost frequency, in
agreement with the numerical predictions.
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Figure 8: Experimental results. PDFs of the intervals between dropouts are plotted as in fig. 4. The lines are
expected resonance frequencies from Eq.(5).

We have also added to the signals forcing a small term (i.e., ∆f 6= 0) which shifts equally both frequencies,
as we have done numerically. In this case we observe that the resonant frequency shifts as well, despite the fact
that the difference remains constant, in a very good agreement with the numerical predictions. Results from
experimental runs using f1 = 7 to 10.5 MHz and f2 = 11.5 to 15 MHz and selecting the optimum amplitude
m = 0.0815 are presented in Fig. 8. As previously, the format of the plot is meant to illustrate better the linear
change of the resonant frequency fR as a function of the frequency shift. The PDFs are plotted using frequency
(i.e., inverse of the dropout intervals) axis and they are lined up with the f1 frequency at which were obtained.
It can be seen that the density of the most frequent dropouts lies on a straight line. The experimental results
also show a remarkable agreement with the theoretical prediction17 and defined by Eq. (5).

Again, since the range of f1 we explored is about twice f0, the dotted line labeled ‘k=2’ predicts the location
of the most important resonance and the one ‘k=3’ the expected ones if the range where to be extended further
up. Thus, the results presented in this figure agree extremely well with the ones described previously in a simpler
system17 and it is an experimental demonstration of this type of resonance at the ghost frequency.

Under the current experimental conditions is cumbersome to change the noise intensity, and thus one is
unable to fully explore the stochastic aspects of this resonance as was done in.17 We find that the most robust
results are obtained when the bias is tuned close to the threshold for LFF, a region where the effects of even
minute fluctuations are expected to be magnified. The origin of these fluctuations, whether they are induced
by the internal nonlinear dynamics or by stochastic sources remains unclear. The consequences of these aspects
deserve to be explored in future work.

5. CONCLUSIONS

In conclusion, we have described, both numerically experimentally a new type of resonance observed when a
semiconductor laser subject to optical feedback is biased close to its excitable dynamics, near the onset of the
low-frequency fluctuation regime. It is shown that when this system is modulated with two weak periodic signals
of different frequencies exhibits a resonance at a ghost frequency, i.e., a frequency that it is not present in the
modulating input. We find that for injection frequencies kf0 and (k + 1)f0, being f0 any slow frequency, we
observe the resonance at exactly f0, a frequency that is not present in the injection current. It is also observed
that when a constant shift is added to both frequencies of the injected signal the resonance does not appear
at the difference between the two frequencies but at a frequency that follows a simple linear relationship. Our
results confirm the recent theoretical predictions by Chialvo and coworkers, based on a more simpler system.17
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